Working on soil quality a win-win for agriculture and water management

Nick van Eekeren

Content

- Short introduction Louis Bolk Institute
- Risk management and resilience
- Importance of soil quality
- Measures for improvement soil quality
- Effect of measures

Louis Bolk Institute

- Independent research Institute on agriculture, human nutrition and human health
- Participatory research and systems approach ('making systems work', 'bottom-up')

Introduction

Programme soil quality, grassland and ecosystem services

- Production (quantity and quality)
- Water (quantity and quality)
- Climate mitigation and adaptation
- Biodiversity and habitat

Its all about risk

Agriculture:

- Capital intensive
- High risk
- Relatively low return on investments

"Normal" economy

 With high risk, there is a chance for high return on investments

Van Eekeren & Bestman, 2012; Erisman et al., 2015

Current agricultural system

- Risk oriented
- Limited variability
- Continuous monitoring and direct intervention
- High use of external inputs
- Static equilibrium
- High long-term risk

After Ten Napel et al. 2006

Current risk management model leads to societal problems

Amongst others:

- Water quality
- Water quantity
- Resistance to antibiotics
- Loss of biodiversity and habitat

Combined with other developments risk only increases

Amongst others:

- Climate change
- Price fluctuation of inputs and milk

Grafiek 1. Gemiddelde melkprijzen 1999 t/m 2015

LTO Internationale Melkprijsvergelijking 2015

Its all about risk

poor conduct as well

as misconduct 1.158

- Capita
- High r
- Relati

"Normal

• With h high r

superstar academic is

required reading p.156

Put people at the centre of global risk management

An individual focus is needed to assess interconnected threats and build resilience worldwide, urge Jan Willem Erisman and colleagues.

lobalization is changing the nature of risk. Natural and social systems - from climate to energy, food, water and economies - are tightly coupled. Abrupt changes in one have a domino effect on others. Floods in Thailand in 2010, for example, led to a global shortage of computer hard disks as a result of factories closing, as well as more than US\$330 million in damage and around 250 deaths.

ON How English

The exposure of people and assets to risks is increasing worldwide. From 1980 to 2012, annual economic losses from environmental disasters rose more than sevenfold, from about \$20 billion to \$150 billion a year¹.

Yet most risk assessments ignore networked threats^{2,3}. The annual Global Risks report of the World Economic Forum considers risks qualitatively, based on the views of experts4. But global outlooks

© 2015 Macmillan Publishers Limited, All rights reserved

remain sectorial and too coarse to guide individuals, organizations, municipalities or nations.

ISTUARY Yves Chauvin

remembered p.159

Nobel-winning chemist,

Risk reports also neglect the collective impacts of personal choices3. For example, eating more beef causes deforestation and biodiversity loss in the Amazon. Local dams for hydropower or water storage alter sediment flows to fertile coastal regions. The movement of people from the

12 MARCH 2015 | VOL 519 | NATURE | 151

nance for

Van Eekeren & Bestman, 2012; Erisman et al., 2015

vestments

A Tuareg woman carries water through a sandstorm in drought-ridden Mali.

Resilient agricultural system

- Makes use of variability
- Enhances self-regulation indirect management
- Dynamic equilibrium
- Low long-term risk

After Ten Napel et al. 2006

Transition towards a resilient agriculture

12

Soil important for resilience Soil = Capital and buffer

Importance soil quality for agriculture and water management

Agriculture

- Production
 - Quantity
 - Quality
- Costs
- Controle of risk

Water management

- Water quantity
 - Water supply in drought
 - Peak discharge
- Water quality
 - Nutrients
 - Pesticides
 - Antibiotics

How?

See....

Understand....

Act....

Working on water and soil quality is working on integral package of :

- 1. Water characteristics
- 2. Soil structure
- 3. Organic matter
- 4. Soil chemical
- 5. Roots
- 6. Soil biota

OUIS BOLI

Red line presentation

- Per element of soil quality
- Effect on water quantity and quality
- Which management
- Land-use (grassland and arable land)

Long-term crop rotation experiment in Belgium

i atu u ri i jk

Four treatments:

- 1. Permanent grassland since 1966;
- 2. 3 years temporary grassland in rotation;
- 3. 3 years temporary arable land in rotation;
- 4. Permanent arable land since 1966.

2. Working on soil structure

Soil structure works on water quantity and quality via:

- Improved water infiltration
- Improved water holding capacity
- Deeper rooting
- Reduced run off nutrients, antibiotics and pesticides
- Improved nutrient use

Win-win for agriculture and water management

Waterinfiltration and soil structure

% Sub angular soil structures

Deru e.a., 2012

Effect land-use on soil structure

Crumbs

Prevention soil compaction

- Drainage
- Ground water level
- Timing
- Machine choice
- Tyre choice
- Tyre pressure
- Etc.

3. Working on soil organic matter

SOM works on water quantity and quality via:

- Improved soil structure
- Improved water holding capacity
- Binding of nutrients, pesticides and antibiotics

Win-win for agriculture and water management

Soil organic matter and water

Increase in vol% / Soil Organic Matter %

e natuurlijke kennisbron

Wosten et al., 2016

Working on soil organic matter: Land use

Balance between Supply and Decomposition

	Supply	Decomposition
Arable land	Low	High
Grassland	High	Low

Effect land-use on Soil Organic Matter

Reducing decomposition Minimal tillage

Increasing supply

- Roots
- Crop residues (varieties, harvesting methods)
- Organic manure
- Compost
- Green manure crops

4. Working on roots

Roots work on water quantity and quality via:

- Improved soil structure
- Increase supply organic matter
- Food for soil biota
- Intensive rooting; P utilization
- Deeper rooting; N and water utilization

Win-win for agriculture and water management

Deeper rooting more water available

In Australia rule of thumb: Each 10 cm rooting depth, 0,5 ton grain production per ha

Faber, et.al. 2012.

d

Intensive rooting improved P utilization

Soil P status

Root length density cm per cm3

Work on roots: Agronomy

Improving rooting via:

- Species and cultivars
- Soil management
- Fertilisation etc.
- Others

Brochure: Back to the roots <u>www.louisbolk.nl</u> Van Eekeren et al., 2011

Working on roots: Breeding

Two varieties of rye grass

6. Working on soil biota

Soil biota work on water quantity and quality via:

- Improved soil structure
- Deeper rooting
- Direct relation with water infiltration
- Suppression of soil disease
- Decomposition of pesticides and antibiotics
- Capturing of nutrients

Win-win for agriculture and water management

Fungal hyphe for water stable particles

Ecological groups of earthworms

Especially anecic species increase water infiltration

Bouche and Al-Addan, 1997

Effect on number of earthworms

Effect on ecological groups

Effect on water infiltration

Working on soil biota for example earthworms

Measures for stimulating numbers and species:

- Minimising disturbance and tillage
- Quantity food
- Quality food
 - N for endogeic earthworms
 - C for epegeic earthworms
- Stability food

Regenwormen op het melkveebedrijf andreiking voor herkennen, benutten en managen Ian Bokhorst Jan de Wit

Summary of effect land-use on six elements of soil quality

		Permanent grass	3 years temporary grass-clover in rotation	3 years temporary arable in rotation	36 years arable
1.Organische matter	%	5,7	3,3	3,8	2,3
2. Soil structure	%	76	65	19	21
3.Roots	n/m2	1081	1813		
4. Soil biota	helling	0,26	0,50	0,53	0,63
5. Water characteristics	Mm/s	2,7	1,1		
6. Soil chemical	Kg N/ha	159	93	102	55

Van Eekeren et al. 2008

Results improvement soil quality

Groenendijk et al. 2015

Conclusions working on soil quality and water

- Most measures win-win for agriculture and water management
- Measures often are linked to each other (for example: improved rooting stimulates soil biota, improves soil structure, increases soil organic matter and improves water and nutrient utilisation)
- Land-use (grassland, arable and crop rotation) and than further prioritisation of measures on basis effect agriculture, water quality and water quantity is necessary

Stop burying your head in the sand but rather look more often under the grass sward

